Automated Mentoring with ChatGPT – O’Reilly

Spread the love


Ethan and Lilach Mollick’s paper Assigning AI: Seven Approaches for College students with Prompts explores seven methods to make use of AI in instructing. (Whereas this paper is eminently readable, there’s a non-academic model in Ethan Mollick’s Substack.) The article describes seven roles that an AI bot like ChatGPT may play within the training course of: Mentor, Tutor, Coach, Scholar, Teammate, Scholar, Simulator, and Instrument. For every function, it features a detailed instance of a immediate that can be utilized to implement that function, together with an instance of a ChatGPT session utilizing the immediate, dangers of utilizing the immediate, tips for lecturers, directions for college students, and directions to assist trainer construct their very own prompts.

The Mentor function is especially essential to the work we do at O’Reilly in coaching individuals in new technical expertise. Programming (like some other talent) isn’t nearly studying the syntax and semantics of a programming language; it’s about studying to unravel issues successfully. That requires a mentor; Tim O’Reilly has at all times stated that our books ought to be like “somebody smart and skilled wanting over your shoulder and making suggestions.” So I made a decision to offer the Mentor immediate a attempt on some quick packages I’ve written. Right here’s what I discovered–not significantly about programming, however about ChatGPT and automatic mentoring. I gained’t reproduce the session (it was fairly lengthy). And I’ll say this now, and once more on the finish: what ChatGPT can do proper now has limitations, however it would definitely get higher, and it’ll most likely get higher rapidly.


Study sooner. Dig deeper. See farther.

First, Ruby and Prime Numbers

I first tried a Ruby program I wrote about 10 years in the past: a easy prime quantity sieve. Maybe I’m obsessive about primes, however I selected this program as a result of it’s comparatively quick, and since I haven’t touched it for years, so I used to be considerably unfamiliar with the way it labored. I began by pasting within the full immediate from the article (it’s lengthy), answering ChatGPT’s preliminary questions on what I wished to perform and my background, and pasting within the Ruby script.

ChatGPT responded with some pretty primary recommendation about following frequent Ruby naming conventions and avoiding inline feedback (Rubyists used to suppose that code ought to be self-documenting. Sadly). It additionally made a degree a couple of places() methodology name throughout the program’s predominant loop. That’s attention-grabbing–the places() was there for debugging, and I evidently forgot to take it out. It additionally made a helpful level about safety: whereas a main quantity sieve raises few safety points, studying command line arguments straight from ARGV moderately than utilizing a library for parsing choices may go away this system open to assault.

It additionally gave me a brand new model of this system with these modifications made. Rewriting this system wasn’t acceptable: a mentor ought to remark and supply recommendation, however shouldn’t rewrite your work. That ought to be as much as the learner. Nevertheless, it isn’t a significant issue. Stopping this rewrite is so simple as simply including “Don’t rewrite this system” to the immediate.

Second Attempt: Python and Information in Spreadsheets

My subsequent experiment was with a brief Python program that used the Pandas library to investigate survey information saved in an Excel spreadsheet. This program had a couple of issues–as we’ll see.

ChatGPT’s Python mentoring didn’t differ a lot from Ruby: it urged some stylistic modifications, equivalent to utilizing snake-case variable names, utilizing f-strings (I don’t know why I didn’t; they’re considered one of my favourite options), encapsulating extra of this system’s logic in features, and including some exception checking to catch potential errors within the Excel enter file. It additionally objected to my use of “No Reply” to fill empty cells. (Pandas usually converts empty cells to NaN, “not a quantity,” and so they’re frustratingly onerous to take care of.) Helpful suggestions, although hardly earthshaking. It could be onerous to argue in opposition to any of this recommendation, however on the similar time, there’s nothing I’d take into account significantly insightful. If I have been a scholar, I’d quickly get annoyed after two or three packages yielded related responses.

In fact, if my Python actually was that good, possibly I solely wanted a couple of cursory feedback about programming fashion–however my program wasn’t that good. So I made a decision to push ChatGPT slightly more durable. First, I informed it that I suspected this system might be simplified by utilizing the dataframe.groupby() operate within the Pandas library. (I not often use groupby(), for no good motive.) ChatGPT agreed–and whereas it’s good to have a supercomputer agree with you, that is hardly a radical suggestion. It’s a suggestion I’d have anticipated from a mentor who had used Python and Pandas to work with information. I needed to make the suggestion myself.

ChatGPT obligingly rewrote the code–once more, I most likely ought to have informed it to not. The ensuing code seemed affordable, although it made a not-so-subtle change in this system’s habits: it filtered out the “No reply” rows after computing percentages, moderately than earlier than. It’s essential to be careful for minor modifications like this when asking ChatGPT to assist with programming. Such minor modifications occur regularly, they appear innocuous, however they will change the output. (A rigorous take a look at suite would have helped.) This was an essential lesson: you actually can’t assume that something ChatGPT does is appropriate. Even when it’s syntactically appropriate, even when it runs with out error messages, ChatGPT can introduce modifications that result in errors. Testing has at all times been essential (and under-utilized); with ChatGPT, it’s much more so.

Now for the subsequent take a look at. I unintentionally omitted the ultimate strains of my program, which made plenty of graphs utilizing Python’s matplotlib library. Whereas this omission didn’t have an effect on the information evaluation (it printed the outcomes on the terminal), a number of strains of code organized the information in a manner that was handy for the graphing features. These strains of code have been now a type of “useless code”: code that’s executed, however that has no impact on the outcome. Once more, I’d have anticipated a human mentor to be throughout this. I’d have anticipated them to say “Have a look at the information construction graph_data. The place is that information used? If it isn’t used, why is it there?” I didn’t get that type of assist. A mentor who doesn’t level out issues within the code isn’t a lot of a mentor.

So my subsequent immediate requested for strategies about cleansing up the useless code. ChatGPT praised me for my perception and agreed that eradicating useless code was a good suggestion. However once more, I don’t desire a mentor to reward me for having good concepts; I desire a mentor to note what I ought to have seen, however didn’t. I desire a mentor to show me to be careful for frequent programming errors, and that supply code inevitably degrades over time if you happen to’re not cautious–even because it’s improved and restructured.

ChatGPT additionally rewrote my program but once more. This closing rewrite was incorrect–this model didn’t work. (It may need carried out higher if I had been utilizing Code Interpreter, although Code Interpreter is not any assure of correctness.) That each is, and isn’t, a problem. It’s yet one more reminder that, if correctness is a criterion, you need to verify and take a look at every thing ChatGPT generates rigorously. However–within the context of mentoring–I ought to have written a immediate that suppressed code era; rewriting your program isn’t the mentor’s job. Moreover, I don’t suppose it’s a horrible downside if a mentor sometimes provides you poor recommendation. We’re all human (no less than, most of us). That’s a part of the educational expertise. And it’s essential for us to seek out purposes for AI the place errors are tolerable.

So, what’s the rating?

  • ChatGPT is nice at giving primary recommendation. However anybody who’s critical about studying will quickly need recommendation that goes past the fundamentals.
  • ChatGPT can acknowledge when the person makes good strategies that transcend easy generalities, however is unable to make these strategies itself. This occurred twice: after I needed to ask it about groupby(), and after I requested it about cleansing up the useless code.
  • Ideally, a mentor shouldn’t generate code. That may be mounted simply. Nevertheless, if you would like ChatGPT to generate code implementing its strategies, you need to verify rigorously for errors, a few of which can be delicate modifications in program’s habits.

Not There But

Mentoring is a vital software for language fashions, not the least as a result of it finesses considered one of their largest issues, their tendency to make errors and create errors. A mentor that sometimes makes a nasty suggestion isn’t actually an issue; following the suggestion and discovering that it’s a useless finish is a vital studying expertise in itself. You shouldn’t consider every thing you hear, even when it comes from a dependable supply. And a mentor actually has no enterprise producing code, incorrect or in any other case.

I’m extra involved about ChatGPT’s issue in offering recommendation that’s really insightful, the type of recommendation that you simply really need from a mentor. It is ready to present recommendation once you ask it about particular issues–however that’s not sufficient. A mentor wants to assist a scholar discover issues; a scholar who’s already conscious of the issue is nicely on their manner in direction of fixing it, and will not want the mentor in any respect.

ChatGPT and different language fashions will inevitably enhance, and their potential to behave as a mentor can be essential to people who find themselves constructing new sorts of studying experiences. However they haven’t arrived but. In the interim, if you would like a mentor, you’re by yourself.



Leave a Reply

Your email address will not be published. Required fields are marked *